1) $19978-7632=12346$
$19978-12346=7632$
$7632+12346=19978$
2) a) $8733(13574+1697=15271 \quad 15271-6538=8733)$
b) $44594(47305-12368=34937 \quad 34937+9657=44594)$
c) $22037(36278-6054=30224 \quad 30224+3914=34138 \quad 34138-12101=22037)$
3) a)

$32105+16251=48356$	$52132-12658=39474$	$9865+15366=25231$
$16251+32105=48356$	$52135-39474=12658$	$15366+9865=25231$
$16251-48356=32105$	$39474+12658=52132$	$25231-15366=9865$
$48356-32105=16251$	$12658+52132=39474$	$9865-25231=15366$

b) $48356-16251=32105$
$12658+39474=52132$
$25231-9865=15366$
2) Terry is incorrect. Addition is commutative (can be done in any order) but subtraction is not. $25231-9865 \neq 9865-25321$, but $25231+9865=9865+25231$.

1) a)

b)

2) Accept any correct answer. Possible answers include:

3) $12346+7632=19978$. Write all the other calculations you can make using these three numbers.
4) Can you work out my number in each of these?
a) I am thinking of a number. I add 6538 and then subtract 1697. I now have 13574 . What is my number?

b) I am thinking of a number. I subtract 9657 and then add 12368 . I now have 47305 . What is my number?

c) I am thinking of a number. I add 12 101, subtract 3914 and then add 6054. I now have 36278 . What is my number?
5) Terry has written the different calculations that can be made from each calculation. He has made some mistakes.
a) Can you identify them all?

$\mathbf{3 2 1 0 5 + 1 6 2 5 1 = 4 8 3 5 6}$	$\mathbf{5 2 1 3 2 - 1 2 6 5 8 = 3 9 4 7 4}$	$\mathbf{9 8 6 5 + 1 5 \mathbf { 3 6 6 } = \mathbf { 2 5 } \mathbf { 2 3 1 }}$
$16251+32105=48356$	$52135-39474=12658$	$15366+9865=25231$
$16251-48356=32105$	$39474+12658=52132$	$25231-15366=9865$
$48356-32105=16251$	$12658+52132=39474$	$9865-25231=15366$

b) How should Terry have written these correctly?
\qquad
\qquad
2) Terry says subtraction can be done in any order, just like addition. Do you agree? Explain your thinking and use examples.
\qquad
\qquad

1) a) Can you complete this arithmagon by adding the numbers in two corners to find the number in the rectangle between them?

b) Can you complete this arithmagon by finding the difference between the two corners to find the number in the rectangle between them?

2) What could the numbers be to complete this arithmagon? Find 2 different possible sets of numbers using addition or difference.

3) Now create your own arithmagons for your partner to try.

Regent Studies|www.regentstudies.com

Diving into Mastery Guidance for Educators

Each activity sheet is split into three sections, diving, deeper and deepest, which are represented by the following icons:

These carefully designed activities take your children through a learning journey, initially ensuring they are fluent with the key concept being taught; then applying this to a range of reasoning and problem-solving activities.

These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding.

Aim

- Add and subtract whole numbers with more than 4 digits, including using formal written methods.

What could the numbers be to complete this arithmagon?

Find 2 possible sets of numbers using addition or difference.

Regent Studies| www.regentstudies.com

1) $12346+7632=19978$. Write all the other calculations you can make using these three numbers.
2) Can you work out my number in each of these?
a) I am thinking of a number. I add 6538 and then subtract 1697. I now have 13574 . What is my number?
b) I am thinking of a number. I subtract 9657 and then add 12368 . I now have 47305 . What is my number?
c) I am thinking of a number. I add 12 101, subtract 3914 and then add 6054. I now have 36 278. What is my number?

3) Terry has written the different calculations that can be made from each calculation. He has made some mistakes.

a) Can you identify them all?

$\mathbf{3 2 1 0 5 + 1 6 2 5 1 = 4 8 3 5 6}$	$\mathbf{5 2} \mathbf{1 3 2 - 1 2 6 5 8 = 3 9 4 7 4}$
$16251+32105=48356$	$52135-39474=12658$
$16251-48356=32105$	$39474+12658=52132$
$48356-32105=16251$	$12658+52132=39474$

$9865+15366=25231$
$15366+9865=25231$
$25231-15366=9865$
$9865-25231=15366$

b) How should Terry have written these correctly?
2) Terry says subtraction can be done in any order, just like addition. Do you agree? Explain your thinking and use examples.

1) $12346+7632=19978$. Write all the other calculations you can make using these three numbers.
2) Can you work out my number in each of these?
a) I am thinking of a number. I add 6538 and then subtract 1697. I now have 13574 . What is my number?
b) I am thinking of a number. I subtract 9657 and then add 12368 . I now have 47305 . What is my number?
c) I am thinking of a number. I add 12 101, subtract 3914 and then add 6054. I now have 36 278. What is my number?
3) Terry has written the different calculations that can be made from each calculation. He has made some mistakes.

a) Can you identify them all?

$32105+16251=48356$	$52132-12658=39474$
$16251+32105=48356$	$52135-39474=12658$
$16251-48356=32105$	$39474+12658=52132$
$48356-32105=16251$	$12658+52132=39474$

$9865+15366=25231$
$15366+9865=25231$
$25231-15366=9865$
$9865-25231=15366$

b) How should Terry have written these correctly?
2) Terry says subtraction can be done in any order, just like addition. Do you agree? Explain your thinking and use examples.

1) a) Can you complete this arithmagon by adding the numbers in two corners to find the number in the rectangle between them?

b) Can you complete this arithmagon by finding the difference between the two corners to find the number in the rectangle between them?

2) What could the numbers be to complete this arithmagon? Find 2 different possible sets of numbers using addition or difference.

3) Now create your own arithmagons for your partner to try.
4) a) Can you complete this arithmagon by adding the numbers in two corners to find the number in the rectangle between them?

b) Can you complete this arithmagon by finding the difference between the two corners to find the number in the rectangle between them?

5) What could the numbers be to complete this arithmagon? Find 2 different possible sets of numbers using addition or difference.

6) Now create your own arithmagons for your partner to try.
